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Abstract

The objective of this study is to find the throttle controls

and trajectories which yield the minimum turning times for a high

performance aircraft with thrust reversal capability. The aircraft

remains in the vertical plane allowing only pull-up and split-s

maneuvers. A second-order parameter optimization method coupled

with the suboptimal control approach is used to solve the minimum

time-to-turn problem.

The results of the study found that trajectories restricted to

the vertical plane gave different results, and in at least one case

better results, than those not so constrained. The results also

indicate that depending on the maneuver performed, thrust reversal

is beneficial in reducing the minimum time-to-turn regardless _)f

whether the aircraft's initial velocity is above or below corner

speed. Finally, the results demonstrate that thrust reversal can

be utilized for minimum time turns with resulting increases in

specific energy.
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MINIMUM TIME TURNS CONSTRAINED

TO THE VERTICAL PLANE

I. Introduction

Background

In recent years, great interest has been taken in the minimum

time-to-turn capability of high performance fighter type aircraft..

This interest has been stimulated by the air-to-air combat require-

ments demanded of these aircraft. Such requirements include quick-

er and tighter turns, commanded nose pointing capabilities, and

increased responsiveness to the requirements of expanded weapon

system envelopes. Recent technological developments have contrib-

uted substantially to the efforts of improving the time required

for aircraft turns. These developments include thrust to weight

ratios greater than one, inflight thrust reversal capabilities,

increased angle of attack capabilities, and greater structural load

factors. With thrust to weight (T/W) ratios greater than one,

aircraft are now capable of accelerating in pull-up maneuvers.

Coupled with inflight thrust reversers, higher T/W ratios contribute

to turning performance because they allow the aircraft to maintain

corner velocity even with changes in altitude. Lastly, both the

improved angle of attack capabilities and load factor enhancement

aid in reducing the time to turn by providing increased lift

throughout the maneuver.

Over the years, numerous studies have addressed the minimum

time-to-turn problem. Each of these studies has had its own

unique problem solving approach resulting in some interesting

conclusions. In the most recent past, Humphreys, Hennig, Bolding,

1.



and Helgeson in Ref (1), Johnson in Ref (2), and Peterson in Ref (3)

obtained results for minimum time turns for aircraft with and with-

out inflight thrust reversal capabilities. In each of the studies,

the aircraft trajectories were unconstrained. The unconstrained

aircraft equations of motion are not integrateable for solutions

confined to the vertical plane because the flight path angle causes

a singularity as it passes through 90 degrees. Also, when the

trajectories do not lie in the vertical plane, the lift vector is

not utilized to its fullest potential. For these reasons, minimum

time turns constrained to the vertical plane are studied in the

belief that the planar constrained trajectory will yield the mini-

mum turning time due to the planar alignment of the lift, thrust,

and gravity vectors.

Statement of the Problem

The problem is to find the optimal throttle controls and the

resulting trajectories for a high performance fighter aircraft

performing minimum time turns constrained to the vertical plane.

The vertical plane restriction limits the aircraft to only the

pull-up and the split-s maneuvers. The maneuvers will begin at a

given set of initial conditions and will be completed when a given

set of end conditions have been met. Completion of the turning

maneuver in minimum time is of paramount importance. Throughout

the maneuver the aircraft will be subjected to typical limitations

including: 1) aircraft maximum angle of attack, 2) aircrait struc-

tural limitations, and 3) minimum and maximum throttle limitations.

For each of these trajectories the throttle controls will be varied,

while all other aircraft characteristics remain the same.
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For this study, the identical aircraft as used in Ref (2) is

chosen to perform the prescribed maneuvers. In order to closely

compare with the results of the Johnson study, the same optimiza-

tiotechnique (the suboptimal control approach to the optimal con-

trol problem) will be employed.

Assumptions

In order to properly model the aircraft equations of motion,

the aerodynamic and thrust forces, and the atmosphere, certain

simplifying assumptions must be made. The aircraft maneuvers over

a flat earth with a constant gravitational acceleration. The

aircraft consumes negligible fuel during the performance of the

maneuvers, the thrust angle of attack equals the aircraft angle of

attack. These assumptions are typical when describing the motion

of a point mass aircraft. The lift coefficient is a linear func-

tion of angle of attack up to the maximum angle of attack, and the

drag polar is a parabolic function. Due to the small change in the

density ratio as a result of changes in altitude during turns, the

maximum thrust available throughout the turn is constant. The

aircraft performs in the Standard Atmosphere as defined by NASA

in Ref (4). Finally, it is assumed that for purposes of modeling

the aircraft maneuvers, the aircraft thrust control can change

instantaneously. This assumption is considered valid since this

type of technology is in the developmental stages.

The following sections will discuss the formulation of the

constrained minimum time-to-turn problem. Section II defines the

minimum time-to-turn problem in three dimensions and the particular

case of a turn in the vertical plane. Section III details the

3



simplifying characteristics of the suboptimal control approach to

the optimal control problem. Section IV outlines the application

of the suboptimal control approach to the minimum time-to-turn

problem. Finally, Sections V and VI will discuss the results of

the study and conclusions, respectively.

!4
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II. Problem Definition

This section defines the minimum time-to-turn problem. It

examines the turning maneuvers and the equations of motion which

generate those maneuvers. The aircraft characteristics, control

variable constraints, and atmosphere model complete the problem

definition. The following paragraphs discuss each of these items

in depth.

The Maneuver

The aircraft turns are constrained to the vertical plane. This

limits the aircraft to two basic maneuvers, the pull-up and the

sp]4 t-s. The split-s maneuver is accomplished by rolling the air-

craft to the inverted position and performing an inverted pull-up.

Each maneuver has two initial velocities; one case above corner

velocity, and the second below the corner velocity. The four

maneuvers will be refered to throughout the remainder of the thesis

as the split-s(low velocity) case, the split-s (high velocity)

case, the pull-up (low velocity) case, and the pull-up (high vel-

ocity) case. Each of the maneuvers begins with the aircraft fly-

ing straight and level (0i=o). The maneuver is complete when

the aircraft once again has reached straight and level flight

(9f=O). The initial and final maneuver conditions appear in

Table 1. Also appearing in Table 1 are two data sets chosen from

the Johnson study for data comparison purposes. Because all of

the cases begin at an altitude of 13990 ft, the gravitational

acceleration at that altitude, g=32.131 ft/sec2 , Ref (4), will be

used throughout the maneuvers.

5



Maneuver V. (ft/sec) h. (ft) Gi @f

i 1 19 1

Split-s(LV) 621 13990 0 0

Split-s(HV) 903 13990 0 0

Pull-up(LV) 621 13990 0 0

Case 4 621 13990 0 0

Pull-up(HV) 903 13990 0 0

Case 5 903 13990 0 0

Table 1. Initial and Final Conditions

Aircraft Equations of Motion

The equations of motion for a point mass aircraft in flight

over a flat earth as derived in Ref(5:48-49) are:

\)( 0 al s cosfT (1)

\' Icos e s O 'V (2)

COE SI - s e)-S (4)

Q~stq5 & T~ ~ AS~SN~)(5)

+ ~ L> (6)
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Assuming that the maneuver performed is a coordinated turn allows

Q=O. Additional assumptions are that the thrust angle of attack

is equal to the aircraft angle of attack, a-id that the angle of

attack is small. These assumptions imply that sinI =0, cosl =1,

6=o<,sino<=<, and coso<=l. The equations of motion then become:

) Vcos Gs (8)

Vs -VCS9N'1 (8)= VS G (9)

W (10)

The flight of a point mass aircraft is now constrained to the

vertical plane to allow only the pull-up and the split-s maneuvers.

This constraint leads to further simplification of the equations

of motion. For flight in the vertical plane, there is no motion

in the x-y plane indicating that y=constant and y=O. Similarly,

the aircraft is not permitted longitudinal maneuvers out of the

x-h plane which forces 0 =0, q- ', sin0=0, sin 'f=0, cos O=1,

and cos f=l. The equations of motion are now reduced to the

desired form for flight in the vertical plane:

7



VCS (13)

Coll Cos(16)

The split-s maneuver is generated by placing a negative angle of

attack (implying 0=180 degrees) into these equations. These

equations model the motion of the aircraft with respect to an

earth fixed coordinate frame. The state variables have been

reduced to x, h, V, and e. The control variables for the maneuver

are now limited too( and T.

Aircraft Characteristics

The aircraft chosen to perform the selected maneuvers is

identical to that used in previous work, Ref (2), for the purpose

of data comparison. The characteristics of the aircraft which

require development are the lift-to-weight, drag-to-weight, and

the thrust-to-weight ratios. Lift and drag are the two aerodynamic

forces in the equations of motion. These forces can be expressed in

terms of atmospheric and aircraft parameters as:

L -(17)

a
8



t0

The lift and drag coefficients are:

CL= CL.4<e (19)

C-0 Cr,4KCL (20)

In the equations of motion, the lift and drag forces are expressed

as non-dimensional lift-to-weight and drag-to-weight ratios. When

equations (19) and (20) are incorporated into equations (17) and

(18) these ratios become:

L1 - ?.GS\] (21)

KC ((22)

The aircraft parameters can be substituted into these equations

in order to obtain numerical values. These aircraft parameters

are:

C =5.0 S=237 sq ft

CD 02 0( max = .2 radians
0

K =.05 (T/W)max = 1.5

W =12,150 lb (L/)max = 7.22

The thrust-to-weight ratio (T/W) is also required for use

in the equations of motion. It is represented as a function of

the maximum thrust available (T max ) and a thrust control variable,

VDr-) .
9



The thrust-to-weight ratio becomes:

where ft has limits of -.6 and 1.0.

Aircraft/Control Variable Constraints

The aircraft is subject to three basic physical constraints

during its vertical plane maneuvers. These constraints include

a maximum angle of attack, a maximum structural load factor, and

minimum and maximum thrust limitations. These constraints are:

~ 'MO*~ (24)

~ (25)

The thrust control constraint, equation (26), can also be expressed

in terms of the thrust control variable:

- ~ (27)

The Atmosphere

The atmosphere model assumed in the solution of the problem

has density ratio,6 , expressed as:

io (28)

10



where

K=  -i4 v-/s~t-°

I :ti6 r/SEC, oR
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III. The Suboptimal Control Problem

(Ref (6))

The minimum time-to-turn problem is an optimal control problem.

The optimal control approach is an inherently difficult and com-

plex solution method. Because the optimal control problem can be

hard to solve, ways of approximating the optimal solution exist.

The suboptimal control problem is a distinct simplification to the

optimal control problem. The approximation of the control variables

reduces the problem to one of parameter optimization. The form-

ulation of the suboptimal control problem is developed in the

following paragraphs.

Suboptimal Control Problem Formulation

The suboptimal control formulation requires that the control

variables be approximated by a mathematical function which is

competely characterizea by a finite number of parameters. This

approximation method assumes that some knowledge of the type of

control required is available. The parameters describing this

mathematical function will be expressed as the vector B. The

control variables are then expressed as

u =U ( ) (29)

where U can be any functional form. If A denotes the vector of

unknown parameters,

A= ji,(30)

12



then the integration of the differential equations (equations of

motion), (13) thru (16), subject to the prescribed initial, final,

and control variable constraints leadsto the functional relation,

7(A')(31)

Because the performance index and final condition constraints

depend only on tf and Xf, and hence A, the optimal control problem

has been reduced to one of parameter optimization. The problem

now consists of merely finding the unknown parameter vector A

which minimizes the performance index,

G =G A =J (32)

subject to the final condition constraints

l(A )=O(33)

Solution of the Suboptimal Control Problem

If the augmented performance index, F, is defined as

then the only constraints which the vectors A and V muat satisfy

are the result of requiring the first variation to be zero. These

conditions are:

13



RZ(A) =0(35)

=0 (36)

Hull and Edgeman, Ref (6), formulate a second-order parameter

optimization technique specifically for application to the sub-

optimal control problem. The technique uses second derivative

information in order to determine how to change the parameter

vector A and the Lagrange multiplier -V such that the first varia-

tion conditions are driven to zero. These changes to A and -V are:

-Ip T T- (38)

S - A(P + MA&-) (38

where P and Q are scaling factors which are used to control the

optimization process. The iterative algorithm for incrementing A

and -V is easily programmed as follows:

1. guess A and V

2. integrate the differential equations and determine Xf

3. compute M, MA, MAA, FA, and FAA

4. compute 6A and J with selected values of P and Q

5. check convergence criteria

6. set A=A+&A, -y=y+ and go to 2

The procedure is greatly simplified over the optimal control prob-

lem but it does require some skill in initially choosing , P,

14



and Q. Hull and Edgeman, Ref (6), were able to calculate the initial

value of 1) from a gradient approach

-V /P (39)

However, the procedure for selecting P and Q is not as obvious.

The constants, P and Q, are initially introduced in thedV and

the CA conputations. The constants-1J and A are introduced to

control FAT and M, so that FAT and M (the first variation of the
A -A

augmented performance index) both go to zero. Hence, one method

of selecting P and Q is to choose them such that the norms 
of FAT

and M always decrease. Another approach is to select P and Q such

that the norms of SL) and EA fall below some criteria. However,

FAT must still be decreasing continuously. With either method of

P and Q selection, it is required that P and Q equal one in the

final stages of convergence.

There are two possible convergence criteria. In one case the

norms of FAT anf M are each below some specified convergence

tolerance. The second potential criteria is similar to the first;

however, the norms of 4A and S are compared to their own specified

tolerance.

15



IV. Application of Suboptimal Control to the Minimum

Time to Turn Problem

Adaptation of the suboptimal control algorithm, as outlined in

Section III, to the minimum time to turn problem is a relatively

straightforward procedure. In order to prepare the problem for

solution on the computer, a number of modifications must be com-

pleted. First of all, the aircraft equations of motion (differential

equations) must be manipulated into a numerically integrateable

form. Similarly, the mathematical form of the control variables

must be defined, and the control variable constraints must be

incorporated into the solution process. The numerical methods

utilized for first and second-order derivative information must

also be specified. Lastly, the convergence criteria and initiali-

zation of the unknown vector A must be established.

Aircraft Eouations of Motion

Because the final time of the maneuver is not initially fixed,

integration of the differential equations, (13) thru (16), with

respect to non-dimensional time simplifies the numerical integra-

tion process. Therefore, the equations will be integrated over

the interval

0!E(40)

where

16



, -

The transformation of the differential equations into a non-dimen-

sional form is accomplished through the use of the deivative chain

rule. This applicatioNyields

X. (42)

di f a'-t j' -L
and finally

Y". (43)

Therefore, the aircraft equations of motion, (13) thru (16), can

be transformed to non-dimensional form simply by multiplying the

right side of the equation by the final time, tf.

The known aircraft and atmospheric parameters can be substituted

into equations (21), (22), (23) after they are non-dimensionalized.

Then, the constant of gravitational acceleration and equations (21),

(22), and (23) are substituted into the aircraft equations of motion,.

yielding the differential equations as a function of ' :

d* -Lgq'c.os E (44)

d -q

. ...... ., S v= I ID I ( ";I-



Mathematical Description of the Control Variables

With the equations to be integrated constrained to the interval

(0,1), the mathematical form chosen to describe the control vari-

ables is a series using Chebyshev polynomials, also defined on the

interval (0,1). The Chebyshev polynomials, TV, represented as

functions of ' for j=1 to j=4 are:

T 1 (48)

T3~-8e± (50)

bp _ Ix.(51)

The control variables are then described in series form by

IMTV (53)

where C and D are the unknown coefficients and part of the vector

A. NPI and NA are the number of tne unknown coefficients for 0-

and ( , respectively.

Constraints on the Control Variables

As discussed in earlier sections, physical aircraft character-

istics limit the performance. These limitations are applied to

18
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the problem in the form of control variable inequality constraints.

The thrust control constraint initially defined by equation (27)

becomes

-./ -  -±! 1.0 (54)

The minimum value of -.6 represents an estimate of the maximum

reverse thrust available in a turn.

Two separate constraints exist for the angle of attack. The

dividing line between these two constraints is an altitude related

parameter called corner velocity, V * Corner velocity is the vel-c

ocity at which the lift coefficient required for flight at maximum

load factor is equal to the maximum lift coefficient. Based on

this definition and the related aircraft parameters, the corner

velocity becomes

\I = (55)

or

Vt. 9 ~C A (56)

When the aircraft flies below corner velocity, the limiting con-

straint simply becomes the angle of attack limitation

(57)

19



Above the corner velocity the aircraft is constrained by the struc-

tural load factor

,, ( 5 8 )

The solution of equation (58) forc3W. is

(59)

when the known values of the parameters are incorporated. These two

constraints as a function of velocity can be seen pictorally in

Figure 1.

Figure 1. Angle of Attack vs. Velocity

(Ref (2))

The division on the angle of attack constraint suggests a

method for determining which constraint applies. It is only

required to monitor the value of the aircraft velocity throughout

the integration process. The angle of attack calculation depends

on whether the aircraft velocity is above or below the corner

velocity for that altitude.

The method for thrust control is slightly more involved. When

it is determined that the thrust control has at any time intersect-

ed its maximum or minimum value during integration, intermediate

20



times, etc., must be introduced to allow the equations

to be integrated from one point of boundary intersection to the

next. This techaique ensures that the thrust control never vio-

lates the constraints.

It is most important at this point to discuss the time during

which the control variables have exceeded their allowable limita-

tions for the entire trajectory. The action required during the

time that the control variables have exceeded their constrained

value is more easily explained by example. Consider the thrust

control, if the thrust control (0r-) is at its maximum value for

the entire trajectory and if the FA term corresponding to that con-

trol is negative, then in order to alter the coefficient so as to

drive the corresponding FA term to zero, it is required that the

coefficient exceed its maximum allowable value. In similar fashion,

if %" is at its minimum value and the corresponding F term is
A

positive, then the q% coefficient must fall below its minimum

allowable value. In either case, the control variable is no long-

er a parameter in the optimization process because its value is

constant (upper or lower limit) and its corresponding FA term

cannot be driven to zero as desired. The fact that the FA term

for that control is not zero is no cause for concern. The minimum

of the performance index with respect to that control occurs on

the boundary and for a boundary minimum the F A term is not supposed

to be zero. The ultimate solution to this problem is to eliminate

the coefficient (*) in order to calculatesa and SA without

its influence.

21
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Numerical Derivative Computations

To compute jand iA, it is necessary to compute the derivative

matrices MA, MAA, FA, and FAA. The latter two can be evaluated

from the expressions:

FA (60)

r~~±vM~AA(61)
where GA is known analytically (since G=tf, Gtf=l, and all other

G A=0) and G AA=0. Therefore, the only unknowns requiring calcula-

tion are MA and MAA*

In order to calculate the end constraint value, M, and its

derivatives MA and MAA, the equations of motion must be integrated

to yield X f(A) from which M can be calculated directly. The MA

and MAA matrices come from a central difference numerical technique.

Let A represent the nominal value of the individual elements ofn

A; then, the equations of motion are integrated to arrive at the

nominal value of M. The first derivative, MA is determined by

first perturbing An by some n positively and then negatively,

k4+ A +(Z4(62)

(63)

where %n is some small positive value to be discussed later.

Integration of the equations of motion using these perturbed

22
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values, An+ and A , results in M and M_, respectively. The

MA  derivative is then calculated using the central difference
n

representation

M+__ (64)

where ff(V) represents an error term of order of magnitude n 2 .

The MAA matrix is determined similarly; however, two elements An

and A must be perturbed both positively and negatively to yieldm

M, M , M , and M after integration. The central difference

representation for the MAA matrix are

MA,4 A-aw. (65)

if n=m

if n/rm. The greatest accuracy in the central difference method is

obtained by using the smallest &n and Cfm possible; if Cn and

Sm are small enough, the error terms can be ignored. The

selection is a critical matter in the integration process. Care

must be taken to ensure that the numerators of equations (64) thru

(66) are not of the same order of magnitude as the truncation

error associated with integration. The 4% chosen for the central
difference technique is

23



(ELTA) A, (67)

or if the absolute value of Cn is smaller than DELTA , then

orELTAt 
(68)

where DELTA is a given small positive number. Therefore, Jn is

controlled by the value of DELTA. This study found that DELTA

equal to 10-4 was an appropriate value although occasional manip-

ulation to l0-3 and 10-2 was required to stabilize the optimiza-

tion process.

Convergence Criteria

The scaling factors P and Q control convergence of the iterative

process. In order for the method to ultimately converge, both P

and Q must equal one. During this study it was found that Q could

be left equal to one throughout the iterative process. The value

of P started at 10 4 and increased by a factor of 10 as long as

the norm of FAT was continuously decreasing for the previous value

of P. Once P equals one, the convergence criteria becomes:

2(69)

0 -Q4  (70)
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Initializing Control Variables

With the aircraft trajectories constrained to the vertical

plane, the bank angle control is removed from the problem, leaving

only angle of attack and throttle as the maneuver controls. Since

lift turns the aircraft, the initial angle of attack is the maximum

value as described in Figure 1. The initial throttle control

depends on whether the maneuver is a pull-up or split-s, and whe-

ther the initial velocity is above or below corner velocity.

Since the quickest turns will be made at corner velocity, the

general philosophy used in selecting the initial throttle control

to choose that throttle which will bring the aircraft to corner

velocity and hold it there throughout the turn. The set of man-

euvers are initiated with a constant throttle control. Once each

case has converged on a solution, an additional coefficient is

added to the control polynomial until there is no improvement

in the turning time. Each of the four maneuvers is handled in

the same way. The four maneuvers in this study are the pull-up

high velocity), the pull-up (low velocity), the split-s (high

velocity), and the split-s (low velocity), where high velocity

refers to initial velocity above corner velocity, and low velocity

refers to initial velocity below corner velocity.
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V. Results of the Study

Individual Maneuvers

The results of the throttle control for each of the four man-

euvers are covered separately in the following paragraphs. The

results of angle of attack control are discussed first because the

results were identical for all four maneuvers. As expected, the

aircraft generates as much lift as possible for minimum time turns

in the vertical plane. In order to generate this lift, the aircraft

remains at its maximum angle of attack limit throughout each of

the four maneuvers for all throttle excursions. This limit is

.2 radians for velocities below corner velocity and the angle of

attack for maximum load factor for velocities above corner velocity.

The interesting point of the angle of attack optimization process

is that the corresponding FA term was found to be negative in all

cases indicating that 'he coefficient desired to be greater than

its maximum allowable value.

The results for the low velocity split-s maneuver are listed

in Table 2 and shown in Figures 2 thru 5. Table 2 lists the

optimal coefficients for the various throttle control polynomials

and the corresponding Lagrange multipliers. From Table 2 it can

be seen that the best turning times are obtained for throttle

controls of quadratic and cubic order. The improvement in the

turning time with cubic throttle control over quadratic control

is negligible (less than one tenth of one percent). The quadratic

control shows an improvement in turning time of 3% and 4% over

linear and constant throttle controls, respectively. Figures 2a,

3a, 4 a, and 5a show the altitude-velocity profiles for constant,
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Figure 2b. Altitude vs. Downrange Distance
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linear, quadratic, and cubic throttles, respectively. In each of

the figures, the dotted line originating at t and ending at tf

is the aircraft trajectory, while the solid line labeled V isC

the corner velocity as a function of altitude. As stated earlier

in the text, the throttle control which can bring the aircraft to

corner velocity as quickly as possible and hold it there will give

the minimum turning times. The truth of this statement is readily

apparent in Figures 2a, 3a, 4a, and 5a. As the order of the

throttle control increases the aircraft's ability to maintain cor-

ner velocity improves noticeably and the time to turn decreases

appropriately. The maneuver in the x-h plane for each of the four

throttle control polynomials appear in Figures 2b, 3b, 4b, and 5b.

The trajectory in each figure begins at t and is completed at tf.

Each of the four trajectories are bacically identical in the x-h

plane. There are minimal differences in the final altitude and

downrange distances. The difference in final altitude among the

four throttle controls is only 68 ft with the minimum being

10,001 ft for the linear throttle and the maximum being 10,069 ft

for the constant throttle case. Final altitudes for quadratic

and cubic throttle controls fell between these two values. Com-

parison of final downrange distances show that the values ranged

from -289 ft for the cubic throttle case to -390 ft for the linear

throttle case while constant and quadratic throttle controls were

-335 ft and -301 ft, respectively. The aircraft throttle controls

which lead to the trajectories for the low velocity split-s man-

euver are shown in Figures 2c, 3c, 4c, and 5c. Figure 2c shows that

a small value of constant throttle (f =-.0579) was required to
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perform the maneuver in minimum time. For the linear throttle

control case (Figure 3c), it was found that a small positive initial

throttle control,t- =.24, was required to drive the aircraft toward

corner velocity. The throttle then decreased linearly to a minimum

value at approximately -.4 at the maneuver's completion. For the

quadratic and cubic throttle controls, Figures 4c and 5c, the throttle

controls were very similar with the cubic throttle control drop-

ping off at the maneuver's comietion. Conclusions regarding the best

throttle control for this maneuver will be made in the Summary

of Results.

The split-s (high velocity) maneuver began its trajectory with

an initial velocity of 903 fps which is well above corner velocity

tof 694 fps. Table 3 lists the optimal coefficients for the split-s

(high velocity) maneuver while Figure 6 displays the results. It

was found that with the combination of high initial velocity and the

split-s maneuver the aircraft was unable to decelerate to corner

velocity even with full reverse throttle, *=-.6. This trajectory

is displayed in Figure 6a. Figure 6b shows the trajectory in the

x-h plane. This figure shows that while the high velocity split-s

maneuver loses over 1300 ft more in altitude than the worst low

velocity split-s case, it finishes the maneuver over 600 ft far-

ther downrange. The throttle control for this maneuver is display-

ed in Figure 6c. Table 3 does not list a value for the Lagrange

multiplier for this maneuver. The reason for this is that the

aircraft was physically constrained to both its maximum angle of

attack limit and its minimum throttle control constraint. Due to

this, the problem was reduced simply to one of calculation of the
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end condition with constant aircraft controls.

For the low velocity pull-up maneuver, the optimal coefficients

are listed in Table 4. It was found that the minimum time for

this maneuver, tf=9.7763 sec, results from a constant throttle con-

trol of if- =1.0. The constant throttle control allowed the air-

craft to accelerate vertically in the maneuver, however it did

not attain corner velocity until the maneuver was completed.

Figure 7 shows the trajectories and throttle control for the low

velocity pull-up maneuver. From Figure 7a it is concluded that

even though the aircraft has the capability of accelerating in

the pull-up maneuver, the low initial velocity and the effect of

gravity do not allow it to accelerate to corner velocity. Figure

7b displays the pull-up (low velocity) maneuver in the x-h plane.

The figure shows that during the maneuver the aircraft gained

over 4200 ft of altitude and completed the maneuver 249 ft down-

range. Figure ?c shows the throttle control required for the

maneuver.

The high velocity pull-up maneuver is shown in Figures 8 and

9. The optimal coefficients are listed in Table 5. Beginning

the pull-up maneuver with an initial velocity much greater than

corner velocity allowed for a number of interesting throttle con-

trol solutions. Figures 8 a and 9a show the altitude-velocity

profiles for the constant and linear throttle controls, respec-

tively. It was found that for the constant throttle case a mini-

mum turning time of 11.15 sec was obtained with a small positive

throttle control, j- =.3246, as shown in Figure 8 c. When the

throttle control was allowed to go to a linear control some in-
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teresting results were obtained. As the optimization process pro-

ceeded, the throttle began to converge on a solution that went from

full reverse throttle to full forward throttle with infinite slope.

This is a bang-bang control and the only parameter to describe it

is the time at which the control switches from full reverse to

full forward throttle control. The results of this control are

shown in Figure 9. Figure 9a displays the altitude-velocity pro-

file which results in a time to turn of 10.171 sec, a 9% improve-

ment over the constant throttle case. The optimal time to switch

from reverse to forward throttle was found to be 3.3923 sec. This

throttle control is shown in Figure 9c. Figures 8b and 9b compare

the x-h plane trajectories for the two throttle controls and it is

r.een that the linear throttle control completes the pull-up man-

euver in over 900 ft less altitude and over 500 ft less downrange

distance than the constant throttle control. When the optimiza-

tion process was allowed to go on to higher order throttle controls

it once again converges to the bang-bang control.

Each of the four maneuvers has been discussed separately. The

following section will make some general comparisons between each

of these maneuvers.

Summary of Results

In Table 6 all of the individual maneuvers performed in this

study as well as the data from previous work (Table 1) are listed

for comparative purposes. The minimum time to turn as well as

aircraft specific energy will be discussed in this section.

Specific energy can be calculated from the expression
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~z= (71)

where g is the gravitational acceleration at the initial altitude

(g=32.131 ft/sec 2). The best overall minimum time to turn is

the low velocity split-s maneuver with cubic throttle control.

The final time is 9.271 sec; however there is a specific energy

loss of 3484 ft. The minimum specific energy loss for this man-

euver. is with the quadratic control. Here the loss is limited to

2818 ft, a 19% improvement over the cubic throttle. Due to the

minimal difference in 0urning times between the quadratic and the

cubic throttle controls, it is evident that the most efficient way

to perform the low velocity split-s is with quadratic throttle

control. The only other maneuver where a choice can be made for

the relative efficiency of the turn is the high velocity pull-up

maneuver, and it is clearly evident that the linear throttle case

is superior. In each of the two remaining cases, high velocity

split-s (tf=10.782 sec) and the low velocity pull-up (tf=9.776 see),

the specific energy results were an 11,448 ft loss and a 6949 ft

gain,respectively.
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VI. Conclusions and Recommendations

Based on the results as listed in Table 6, a number of con-

clusfons may be made regarding turning maneuvers performed in the

vertical plane.

1. Trajectories restricted to the vertical plane gave

different results, and in at least one case better

results, than those not so constrained.

2. For the split-s maneuver, thrust reversal is beneficial

in reducing the minimum time to turn regardless of

whether the aircraft's initial velocity is above or

below corner velocity.

3. For the pull-up maneuver, thrust reversal is beneficial

in reducing the minimum time to turn only if the aircraft

initial velocity is above corner velocity.

4. Although the split-s maneuver minimizes turning time,

comparison of pull-up and split-s maneuvers in the

vertical plane shows that for the split-s maneuver,

specifij energy is severely penalized when minimum

turning time is desired.

Comparisons are made to the results of previous work, Case 4

and Case 5, in Ref (2). Comparison of the low velocity pull-up

maneuver to Case 4 shows that although the pull-up required 2%

more time to complete the maneuver, it provided for a 25% improve-

ment in specific energy. Similar comparison of the high velocity

pull-up with linear throttle control to Case 5 showed that the

pull-up maneuver improved turning time by 4% and iiproved specific

energy by 300%. As evidenced by these comparisons and the data
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summarized in Table 6, it cqn be stated that trajectories constrain-

ed to the vertical plane can be optimal minimum time to turn sol-

utions. It can also be stated that thrust reversal can be used

for minimum time turns with resulting increases in specific energy.

There are two recommendations that can be made regarding fur-

ther study of the minimum time to turn problem. These recommend-

ations are:.

1. The closeness of the turning times indicate that for

this aircraft it doesn't make any difference in which

plane (straight lines as mapped in the y-h plane) the

minimum time turn is performed, each of the cases have

turned out fairly close. It would be interesting to deter-

mine the minimum turning times for all of the different

planes.

2. The development of a set of aircraft equations of

motion which can transition from vertical plane motion

to 3-D motion with no problems is required in order

to do accurate performance studies of high performance

aircraft. The use of quaternions which are used in

inertial navigation might be a big step in this direc-

tion.
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